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ABSTRACT

The results of detailed experimental and theoretical considerations
relating to multiple hologram recording in lithium niobate is reported.
The following problem areas are identified and discussed: 1) the angular
selectivity of the stored holograms, 2) interference effects due to the
crystal surfaces, 3) beam divergence effects, 4) material recording sen-
sitivity, and 5) scattered light from material inhomogeneities.
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I- INTRODUCTION

A program to study high capacity recording in electro-optic crystals

was undertaken. This study focused on the problems associated with very

high capacity storage (through multiple hologram superposition) and the

use of lithium niobate as the recording medium.

A number of important problem areas were identified and studied.

These included: 1) the angular selectivity of the stored holograms, 2)

interference effects due to the crystal surfaces, 3) beam divergence effects,

4) material recording sensitivity, and 5) scattered light from material

inhomogeneities.

Single hologram and multiple hologram recording experiments were per-

formed on a vibration isolation table with an argon laser using the experi-

mental configuration shown in Fig. I. Holograms were analyzed experimentally

by reading them with laser light of 488.0nm, 514.5nm, and 632.8nm wavelength.

To properly interpret the above experimental results, a number of

analytical studies were initiated to provide predictions of the read-out

parameters of the volume holograms.
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FIGURE 1. EXPERIMENTAL CONFIGURATION FOR MEASURING THE OPTICAL
HOLOGRAPHIC STORAGE PROPERTIES OF FERROELECTRIC CRYSTALS.



II. ANGULAR SELECTIVITY

Because of the three-dimensional nature of the crystal, holograms

recorded in lithium niobate are volume holograms. These holograms are

produced directly (without processing) by the interference of laser beams

of the appropriate wavelength intersecting in the crystal. The volume

nature of this holographic storage is especially interesting since it

indicates the possibility of very high capacity information storage.

Volume (thick) holograms exhibit a number of properties in addition

to those possessed by two-dimensional (thin) holograms. Among these pro-

perties is angular selectivity--the need for the reference beam to illu-

minate the hologram at a precise angle in order to achieve reconstruction.

Illumination outside of this angular corridor produces a rapidly decreasing

intensity of the reconstructed data. To perform these diagnostic experi-

ments plane wave holograms (caused by the interference of two plane waves)

were used. Even though this is a special case, a general hologram may be

constructed by the superposition of an infinite number of plane wave holograms.

Reconstruction of a volume hologram [1] is possible (with half maximum

diffracted power or greater) only over the range of wavelengths given by

AX L
-- cot 9 - (1)

X t

and only over the range of angles given by

A = A(%o)n(X,P) , (2)

where AX and Ae are centered about the writing wavelength X, and the writing

angle, e. The thickness of the hologram is given by t, L is the fringe

3



spacing of the fundamental grating (L = X/2sine), n(X,P) is the appropriate

index of refraction for the probing beam wavelength and polarization, and

A(T6) is the angular selectivity coefficient (approximately equal to unity).

These types of properties are in actuality just manifestations of the

increased storage capacity of the volume storage medium.

The experimental configuration shown in Figure 1 was used to measure

the angular selectivity and compare it with the theoretical value. Thicknesses

from Imm to 5mm were tested. Both iron-doped and nominally pure crystals

of lithium niobate were used. The half-power angular widths were found to

be in agreement with theoretically predicted values. These results show

that the theoretical angular packing density of multiple holograms is

achievable! This important finding was reported in Appl. Phys. Letters [2].

This publication gives experimental details as well as results and is repro-

duced here for completeness.

Additional experimental results have been obtained since Ref. 2 was

published. These show a much more detailed comparison of theory and experi-

ment for a broader range of reading angles. These data are shown in Figs. 2

and 3.

4
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FIGURE 2. A COMPARISON OF ANGULAR SELECTIVITY EXPERIMENTAL DATA WITH RESULTS FROM THE
COUPLED WAVE THEORY. The particular thickness chosen, d, yields the best

fit close to the Bragg angle.
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FIGURE 3. AMPLITUDE RANGE OF THEORETICAL ANGULAR SELECTIVITY DUE TO MINUTE THICKNESS
VARIATIONS. The thickness used in producing the plain curve is that
needed to obtain a minimum value of the transmittance factor on the Bragg
angle (7= 0.3). The crossed curve corresponds to maximum transmittance

(7 = 1.8). The experimental data is seen to occur within these extremes.



III. SURFACE INTERFERENCE EFFECTS

Many analyses of hologram reconstruction do not account for boundary

(surface) reflections. The diffraction efficiency results may be corrected

to include boundary reflections by multiplying by a transmittance factor.

This factor, T, is developed by us in Ref. 3, a copy of which is included

in this report. This factor is the same as the transmittance factor derived

by Kogelnik and given as Eq. (8) in Ref. 4, but with Vd in that equation

replaced by the argument of the sine function in Eq. (27) in our paper [3].

From these results, we find that boundary reflections produced by the

surfaces can considerably change the diffraction efficiency. The change

can be an increase or a decrease depending on whether the transmittance

factor is greater or less than unity. This effect has been studied by

Cohen and Gordon [5]. For the grating parameters used here, T is typically

in the range 0.70 to 1.20. In practice, the boundary reflections can be

eliminated by antireflection coatings on the surfaces of the gratings.

Calculated results showing the thickness dependence of T for lithium

niobate are shown in Fig. 4. The effect of T as a function of reading

angle is shown in Fig. 5.
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IV. BEAM DIVERGENCE EFFECTS

The effect of writing beam divergence was studied. First, a hologram

was written with a frequency doubled Nd:YAG laser ( = 530nm) with a beam

divergence of 0.143 . Second, a hologram was written with an argon laser

(x = 514.5nm) with a beam divergence of 0.0350. The angular selectivities

of these holograms were then measured with a He-Ne laser. The half-power

angular width in both cases was found to be within 10% of the theoretical

value derived in our paper [2]. Thus, it was concluded that writing beam

divergence has little effect on the final read-out process.

1/ /



V. RECORDING SENSITIVITY

Recording materials must possess a number of important characteristics

to achieve the high storage capacities that have been predicted for optical

memories. These requirements on the optical recording material include:

1. High sensitivity--It is desirable that only a small amount of optical

energy per unit area be needed to record the hologram of a data page. Table

3 in Ref. 6 (reproduced later in this report) lists the necessary writing

energy densities for a number of recording materials. For a practical system

an energy density of about 1 millijoule/cm2 or less will be needed. 2. Large

diffraction efficiency--Diffraction efficiency is the fraction of the reading

light (reference beam) that is diffracted into the reconstructed data beam.

It must be possible to record a single hologram with a large diffraction

efficiency, so that in practice many holograms may be recorded at a single

location, each with an equal share of the total maximum diffraction efficiency.

Therefore, it is desirable to have the maximum diffraction efficiency as

close to 100% as possible. 3. Erasable and rewritable-For a rapid cycle

read-write-erase memory system, it must be possible to continuously alter

the stored data in the memory without encountering any degradation in the

material characteristics. 4. Long lifetime of stored information-Stored

data should persist for long periods of time before having to be refreshed.

Ideally, storage should be permanent. 5. Non-volatile storage-Data should

remain recorded in the memory in the absence of system power. 6. Nondestruc-

tive readout--It should be possible to perform an essentially unlimited

number of read operations without degrading or altering the stored data.

7. Three dimensional storage-To achieve very high capacity storage, the

information should be stored in thick (volume) holograms. Together with the

requirement of high diffraction efficiency, this means that the hologram



should be a thick phase (nonabsorbing) hologram. 8. High resolution-

The storage material obviously must be capable of recording the very fine

(wavelength size) variations of the interference pattern produced by the

intersection of the object and reference beams.

Considering all of the above material requirements, the photorefractive

materials (optically induced changes in index of refraction) appear to be

especially promising. These materials, often ferroelectric crystals such

as lithium niobate and strontium barium niobate (SBN), have been consider-

ably developed and improved. For example, in the first use of lithium

niobate as a recording material in 1968 a writing energy density of approxi-

mately 100 joules/cm 2 was required [7]. Less than six years later, doped

versions of lithium niobate have now been shown in this work to exhibit

writing energy densities of 2 millijoules/cm2! We have announced this im-

provement in sensitivity of almost 5 orders of magnitude in Applied Physics

Letters V8]. This article is reproduced here for completeness. Fig. 6

depicts this recent jump in sensitivity with respect to other potential

recording materials. In addition, recent work by von der Linde et al. F9]

indicates that even higher sensitivities are possible in lithium niobate!

/3 (
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Writing
Energy Density

Material Type of Material ( joules/cm2

Bi1 2Si 020 Ferroelectric-Photoconductive 1 x 10- 5

Malachite Green:
Sucrose Benzoate Thermoplastic 2 x 10- 5

Agfa BE70 Photographic 2 x 10- 5

Kodak 649F Photographic 7 x 10- 5

Bi4 Ti3 01 2 -ZnSe Ferroelectric-Photoconductive 1 x 1 - 3

LiNb 03:Fe Photorefractive 2 x 10- 3

Sr0.75 Ba25Nb2
0

6  Photorefractive 6 x 1 - 3

Dichromated 3
Gelatin Photochemical 9 x

Ca F2 : Ce Photochromic 1 x 10- 2

KCL:Na Photochromic 1 x 10- 2

Mn Bi Magnetooptic 3 x 10- 2

Rice Univ.
Georgia Tech Te8 8 Ge7 As 5  Amorphous Semiconductor 5 x 10-2

1974 Gd I G Magnetooptic 9 x 10-2

Eu 0 Magnetooptic 9 x 10- 2

Na F Photochromic 9 x 10- 2

Co-P-Ni-Fe Magnetooptic 1 x 10- 1

SrTiO3:Ni:Mo Photochromic 2 x 10-1

Ba Ti 03 Photorefractive 2 x 10-1

Mn Al Ge Magnetooptic 3 x 10-1

Te81Ge 15 Sb2 S2  Amorphous Semiconductor 5 x 10- 1

LiNb03:Fe Photorefractive 8 x 10-1

KBr Photochromic 1

Cu2 Hg 14 Thermoplastic 3

BaNaNb 5 015  Photorefractive 5

Bi4 Ti3 0 12  Photorefractive 10

Sr0 .7 5Ba 0. 2 5 Nb2 0 6  Photorefractive 14

LiNb03 Photorefractive 100

FIGURE 6. REQUIRED WRITING ENERGY DENSITY FOR VARIOUS OPTICAL
RECORDING MATERIALS.



VI. SCATTERED LIGHT EFFECTS

Scattered light during hologram reconstruction has been recognized as

a problem for high capacity storage in lithium niobate 0l].

We have reported Ill] the presence of cones of diffracted light upon

illumination of previously laser-exposed crystals of lithium niobate. These

diffraction cones are shown to result from the internally recorded inter-

ference pattern (hologram) resulting from the interference of the original

incident laser beam with light scattered from material inhomogeneities.

Diffraction cones are observed in iron-doped lithium niobate crystals that

were exposed to a single laser beam and in crystals that were exposed to

two superposed laser beams (i.e., during conventional holographic recording).

In the two beam case, the diffraction cones are present in addition to the

first order diffracted beam when the conventional two beam thick hologram

is reconstructed. The diffracted cones produce the impression of scattered

light during hologram reconstruction, an effect that has previously been

reported in transition metal doped lithium niobate [10].

The diffraction cones, which have their apex in the exposed region of

the crystal, are observed as rings (referred to as "scattering" rings, or

diffraction rings) when a screen or a piece of film intersects the cone of

light. Figure 1 in Reference 11 shows two typical diffraction ring patterns.

For the single beam case, the observed results in lithium niobate are effec-

tively the same as the experimental observations of Moran and Kaminow [12]

for polymethyl methacrylate (PMMA), which had been exposed to ultraviolet

laser light.

The presence of diffracted cones of light represents a possible limi-

tation of heavily iron doped lithium niobate for data storage applications



because optical power is lost into the scattering induced diffraction cones

that could otherwise be used to increase the diffraction efficiency and thus

the total bit capacity of the two beam grating hologram. However, it has

already been shown by Phillips, Amodei, and Staebler [10 that the "scattered"

light may be erased 1) by illumination with uniform incoherent light or 2) by

writing additional superposed holograms at new angles. In the latter case,

"scattered" light from the previous holograms tends to be erased.

Our Ref. 11 is reproduced here for completeness.

I:



LASER SCATTERING INDUCED HOLOGRAMS .IN LITHIUM NIOBATE

R MAGNUSSON AND T K GAYLORD

School of Electric Engineering Georgia Inst. of Technology, Atlanta, Georgia

PAPER INTENTIONALLY OMITTED



VII. MULTIPLE HOLOGRAM STORAGE

In the last four sections, problems associated with multiple hologram

storage have been discussed. The experimental results presented have been

obtained using the basic experimental configuration shown in Fig. 1. Basic

diagnostic experiments were performed by storing both single holograms and

by storing multiple holograms [13] at a single location. The theoretical

storage density of two dimensional (thin) holograms is 4 x 108 bits/cm2 (one

bit per square area one wavelength on a side) whereas in three dimensional

volume (thick) holograms the theoretical storage density is 8 x 1012 bits/cm
3

(one bit per cube volume wavelength on a side) [14]. Obviously for truly

high capacity storage, thick holograms (such as in optical crystals) need to

be used instead of thin holograms (such as in photographic emulsions or

metal films). Holographic memory systems have been described that utilize

three-dimensional storage [15]. These systems superpose many holograms at

a single location inside the thick recording medium by using a different

reference beam angle for each hologram. The superposition of multiple

holograms at a single volume location introduces the.additional problem of

writing new holograms in that volume without affecting those already there.

When lithium niobate is used as the three dimensional storage material, this

problem may be solved by the application of an external electric field [16],

[17]. This greatly increases the sensitivity for writing while the sensi-

tivity for erasure remains unchanged at a much lower value. Thus, as a new

hologram is written, the other holograms at that location are only slightly

erased. Work is presently underway in our laboratory to duplicate these

electric field effects.

/,



VIII. RECORDED HOLOGRAM ANALYSIS

A method for analyzing the diffraction efficiency of thick, lossless

transmission holograms in lithium niobate was developed. In lithium niobate

and similar ferroelectrics, the literature assumes the induced changes in

index of refraction are sinusoidal in nature, like the two beam plane wave

interference pattern. The diffraction efficiency can be predicted for the

sinusoidal case [1]. In actual fact, the index of refraction variation is

probably not sinusoidal due to the obviously nonlinear writing characteristic

(diffraction efficiency versus exposure), which is experimentally observed.

We have developed [3] a method for calculating arbitrary-order diffrac-

tion efficiencies of thick, lossless transmission gratings with arbitrary

periodic grating shapes. For illustration, numerical values of the dif-

fraction efficiencies at the first three Bragg angles were calculated for

sinusoidal, square wave, triangular, and sawtooth gratings. The complete

details of this method are expounded in Ref. 3,which is duplicated in this

report. Also a comparison of our method to an extension of the Burckhardt

matrix method [18] is presented in Fig. 7. Our method was determined to be

20 times faster on the computer!

a 7/
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Calculation of arbitrary-order diffraction efficiencies of

thick gratings with arbitrary grating shape*

S. F. Su and T. K. Gaylord
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A method for calculating arbitrary-order diffraction efficiencies of

thick, lossless transmission gratings with arbitrary periodic grating

shapes has been developed. This represents an extension of previous

work to nonsinusoidal gratings and to higher-order Bragg angles. A Fourier-

series representation of the grating is employed, along with a coupled-

mode theory of diffraction. For illustration, numerical values of the

diffraction efficiencies at the first three Bragg angles are calculated

for sinusoidal, square-wave, triangular, and saw-tooth gratings. Numerical

results for the same grating shapes with the same parameters are also

calculated for comparison, by extending Burckhardt's numerical method for

analyzing thick sinusoidal gratings. The comparison shows that the coupled-

mode theory provides results with relative computational ease and results

that are in agreement with calculations obtained by extending the more-rigorous

Burckhardt theory to nonsinusoidal grating shapes and to higher-order Bragg

angles.

Index Headings: Gratings, Diffraction.



It is well known that thick dielectric diffraction gratings differ

from thin gratings in a number of important ways. Among these are the

capability of high diffraction efficiency, wavelength selectivity,1

angular selectivity,1 and reduced noise.2 These give rise to the use of

thick gratings as highly efficient diffraction gratings, narrow-band

spectral filters, thick-grating optical components, such as lenses, and

imaging systems capable of spectral resolution of extended objects.2 In

the field of integrated optics, thick gratings may be used as diffraction

gratings for surface guiding of waves, for thin-film distributed-feedback

lasers,6 for frequency-selective grating reflectors in thin-film lasers, 7

for grating couplers for launching single-mode light waves into thin-film

waveguides, 8 '9 and for electro-optic grating deflectors and modulators.10

In addition, thick (volume) holograms may be regarded as recordings

of an infinite number of thick gratings. Thick holograms have attracted a

great deal of interest by their use in high-capacity information storage,1 1

in color holography, 1 2 and in white-light reconstruction of holograms. 1 3

The diffraction of a plane wave by a thick sinusoidal grating at or

near Bragg incidence has been considered by Burckhardt 14 and by Kogelnik.1

Burckhardt has treated this case by solving the exact electromagnetic

boundary-value problem and has obtained numerical results with a digital

computer to determine the eigenvalues of a matrix and to solve the resulting

set of linear algebraic equations. Kogelnik has obtained a closed-form

expression for the diffraction efficiency at the first-order Bragg angle,

by employing a coupled-wave theory. Coupled-wave theories also have been

used successfully in the treatment of light diffraction by acoustic waves.
15,1 6

Recently, Chu and Tamirl 7 treated this problem by using a guided-wave



technique. They assumed sinusoidal modulation of the relative permittivity

by the sound wave. Their treatment was based on a rigorous modal approach,

utilizing the interrelationships between the characteristic mode and the

coupled-mode representations. With their method, not only the diffraction

efficiency at the first order but also that of any higher order can be

obtained.

In this paper, Chu and Tamir's approach is extended to examine the first-

and higher-order diffraction efficiencies of thick, arbitrary-shape gratings.

Because of the periodicity of the grating, a Fourier-series representation

of the grating is employed. The gratings are assumed to be lossless. The

reflections at surfaces of the gratings are at first neglected in the

derivation, because, in practice, these can be eliminated by antireflection

coatings. When surface and internal reflections are present, the results

are corrected by a multiplicative transmittance factor. For illustration,

numerical values of the diffraction efficiencies at the first three Bragg

angles are calculated for sinusoidal, square-wave, triangular, and saw-tooth

gratings. For comparison, numerical results for the same grating shapes with

the-same parameters are also calculated by extending Burckhardt's numerical

method. The comparison shows that the results from these two methods are in

close agreement and that the present method is computationally simpler and

more efficient.

- (TJ



THEORETICAL ANALYSIS

The model for a thick periodic grating can be described by Fig. 1. The

x axis is chosen in the plane of incidence and parallel to the surfaces of

the medium, the z axis is perpendicular to the surfaces of the medium, and

the y axis is perpendicular to the page. For convenience, the fringe planes

of the grating are assumed to be perpendicular to the surfaces of the medium

and to the plane of incidence. The grating vector K is, therefore, parallel

to the x axis. Thus, for lossless periodic gratings, the fringes of the

grating can be represented by a spatial modulation of the relative dielectric

constant,

ar(x) =  (x)/go C ro + [e chcos(hKx) + eshsin(hKx)], (1)
h=l

where K = 2 n/L, L is the period of the grating, ero is the average value of

er, and ech and esh are the spatial modulations of er, the subscripts c, s

and h denoting the quantities connected with the cosine gratings, the sine

gratings and the h th-harmonic grating, respectively. Corresponding to the

distribution of the relative dielectric constant, the distribution of the

refractive index of the medium is

n(x) = no + Z [nchcos(hKx) + nshsin(hKx)], (2)
h=1

where no is the average refractive index of the medium, and nch and nsh are

the spatial modulations of n.

The electric field of the incident wave is assumed to be polarized

perpendicular to the plane of incidence (H mode) and is of the form



expj( oX + o z - Wot)]. The wave propagation in the grating can be described

by the scalar wave equation

C 2 + k e (x) ] E(x,z) = 0, (3)

where k = 2 rr/ A, is the free-space wavelength of the incident plane wave,

and E(x,z) is the complex amplitude of the y component of the electric field,

which is independent of y.

Eq. (3) has been solved by Burckhardt,1 4 using separation of variables,

an infinite-series solution for the x-dependent equation, and a matrix method

to solve the eigenvalue problem associated with a truncated set of the resulting

infinite system of equations. This approach has been used to obtain numerical

results for sinusoidalgratings. Kaspar has extended Burckhardt's method to

find the diffraction efficiency for nonsinusoidal absorption gratings. He has

pointed out that when the absorption is strong, the phase-grating contribution

to the diffraction efficiency is very small.

Chu and Tamir 1 7 have shown that the field inside the grating can be

described in terms of coupled modes if the modulations of the relative dielectric

constant are very small. In general, in addition to the zeroth mode, many

higher-order modes are excited, because of the presence of the grating. For

an incident wave (zero-order mode) of wavelength X, and at an angle e0 , the

fundamental grating will diffract this wave if the Bragg condition, m k=2L sin o ,

is satisfied or nearly satisfied. For this particular wavelength and angle, the

harmonic gratings may or may not produce diffraction, depending on whether or

not their corresponding Bragg conditions are satisfied or nearly satisfied.

These diffracted modes of the fundamental and the harmonic gratings propagate

in the same direction.

--



The dimensionless quantities

= 2( ) 2  h' h = 1, 2, 3, (4)

q = 2( L 2 sh' h = 1, 2, 3, (5)

are called the effective-modulation indices.
1 7'2 0 Because ach and ash would

typically be 10-4 or smaller, qch and qsh are small even if L is many times

0 -4t 0.0066.
as large as \. For example, if 8o  5 and l =10 , then q = 0.0066.

When q is very small compared to unity, it can be shown 
1 7 2 1 that two

coupled-wave equations and therefore two modes are sufficient to describe

the coupling effects when the incident angle is equal to or near the Bragg

angle. Therefore, for an incident wave of wavelength k and at an angle o

the electric field inside the grating can be written as the sum of the

fundamental mode and an arbitrary mode

E(x,z) = So(z) exp(j Tx) + Sm(z) exp(j lx), (6)

where 'o and are the zeroth-mode and the m th-mode (with respect to the

fundamental grating) transverse wave numbers, respectively. The continuity

of the electric field at z = 0 and the Floquet theorem require that o = I

= k sine and = m 2mrr /L. The tilde " will henceforth be used to

denote the quantities in the dielectric medium when the gratingsare present.

The integer subscript m represents the m th-order diffraction. The integer

h represents the h th-harmonic grating. Diffraction occurs when the h th-

harmonic grating satisfies or nearly satisfies the Bragg condition mh X =

2(L/h) sin90, where nh represents the mh th mode (with respect to the h th-

harmonic grating) excited due to the h th-harmonic grating. Exact-Bragg

conditions occur when mh is equal to m/h where h divides evenly into m.

Near-Bragg conditions occur for the wavelength X 1) when the angle of



incidence is near, but not equal to o , and/or 2) when the value of m is

large, and h divides nearly evenly into m, so that m/h is almost an integer.

Thus, m(z) in Eq. (6) represents the total amplitude, together with the

propagation factor in the z direction, of the diffracted mode due to all of

the gratings that satisfy or nearly satisfy the foregoing Bragg condition.

At the boundary z = d, o propagates at the angle 8o, whereas m propagates

at an angle 9m, which is determined by

S= sin (L) sin (sin80 - M ) (7)

The diffracted modes due to the gratings that are far from obeying the Bragg

condition are assumed to be negligibly small compared with t and .o m

Therefore, the interaction between a and m can be characterized by theo m

coupled-mode equations22

dS m
dz -00 SoC +C h) ]S = 0, (8)

dS m

d J - - JC sh)]to = 0, (9)
dz mm L chh shnh

where o and 5m are the longitudinal wave numbers inside the medium when the

gratings are absent. They are given by )o= k(ero)cos 9c and m = [k2ero- [k

(ero) sin c - (2mrr/L)]2 , where p, the refraction angle in the medium, is

given by cp = sin-1[ (sin 8 )/(ero) ] . The bar notation will henceforth be

used to denote the quantities inside the medium when the gratings are absent.

For a given value of, the integer m, the subscript h may be any integer that

divides evenly or nearly evenly into m, provided the corresponding h th-harmonic



m
grating exists. The symbol E denotes the surmmation over all of these possible

17,21values of h. The coupling coefficients in Eqs. (8) and (9) are given by

C h ( ' )2 (q h (10)
chmh -- + (mh-1) L/h c

o m (2) (mh-1)!

C 1 1 1 2 r )2(q)mh (11)
shmh 5+ 2 (mh-%) L/h sh.

h o m (2) (mh-l)!

If the grating does not exist, Cchmh= Cshmh= 0, there is no coupling between

S and S and therefore no diffraction. Under this condition, only Eq. (8)
o m

has physical significance. It represents the propagation of the fundamental

mode (incident wave) inside the medium.

The solutions of Eqs. (8) and (9) are of the form

S (z) = A exp(jo z) + B exp(j z), (12)

S (Z) = A exp(j oz) + B exp(j Mz). (13)

The wave numbers o and (m can be found directly by substituting Eqs. (12) and

(13) into Eqs. (8) and (9). They are

~ o m + o m m 2 M2  2 2
om [  ( +  E C ) + (  C Cshmh)2] ,  (14)

h h

where the + sign corresponds to §o and the - sign to m . The constants Ao,

Bo , Am, and B are determined by the boundary conditions and

m
m

[ZE (Cch- JC )]A - ( - M )A = 0, (15)
h cmh smh.



[Z (C ch - JC sh ) ] B  - (  m )Bm = 0, (16)

which are obtained from Eqs. (9), (12),and (13). To specify the boundary

conditions, the amplitude of the incident wave is assumed to be unity at z=0

so that, from Eq. (12),

So(0) = A + B = 1. (17)

Initially, the amplitude of the diffracted wave is zero. Therefore, evaluating

Eq. (13) at z = 0 gives

S (0) = A + B = 0. (18)
m m m

Solving Eqs. (15), (16), (17),and (18) for Ao, B o , Am, and Bm gives

o-m

A -

o m
m m

(§ - m + ( m) + 4 EC )2 + ( EC sh

2 o +4( )2 m 2 -"2 (19)

- ) + 4 [( chmh + ( cshmh ) ]
h mh h shmh

B =
o o - m

0 m

(§ - §) + ( - § ) + 4 EC + ( EC hh )1 hch h (20)
( - ) + 4 [( EC + ( EC ) 2  (20)

0 m h chmh h sh'

m m
(EC ) - j( EC )

A B h Chmh h smh (21)A = - B . (21)
m m 2 m 2

§M + 4 E c ) + Ec )h
+4( C .hh +(Cshmh

hcfl



For the exact-Bragg condition, m = 0 and e = 0 . Hence, Eqs. (14), (19),

(20), and (21) become

m )2 m 2

=[( C )2 + ( E C )2 4 (22)o,m 0= t h shm

A = 1/2 = B, (23)
o O

m m
( E Cch) - ( Ch )

1 h cm shmh
A = -B (24)
m m 2 m m

( C chh)2 + ( C shmh ) 2

Thus, the transmitted and the diffracted modes are

m 2  m (25)
SSo(z) = exp(jo z) cos[ ( EC ) + ( EC ) z), (25)

o o h h sh

m 2 m

m (z)= j2A exp(j oz) sin[ ( F Cchmh ) + ( C C ) 2  z), (26)
Sm o h chm h shmh

where Cchmh and Cshmh are given by Eqs. (10) and (11) with m = o , and Am

is given by Eq. (24). Eq. (26) is the general formula for the m th-diffracted

mode due to any periodic grating when the incident angle of the zeroth mode

satisfies the Bragg condition m X= 2L sin 9o . The diffraction efficiency for

the m th order of diffraction is defined as

S (d) S (d)
DE m m (27)

m S (0) So(0)

and thus for exact-Bragg conditions

m m 2
DE = sin2[( )Cch ) 2 + ( C 2shmh d), (28)
mh h h shm

where the asterisk * denotes complex conjugate. Upon substituting Eqs. (10)

3/ )



and (11), with m = ~o, into Eq. (28) and performing some algebraic manipulations,

we find that

2(mh-1) T (e mh
1 1 2L ch 2

DE = sin [( [ 1
m h (h-1 2mh-l) (E) cos

(2) (mh-l)! (h) % (ro cs

m 2( h-1) ( )mh
+ . I [ - 1 2 L sh ] 2) d]. (29)

h h (mhh-1) (2mh-1) (e ) cos
(2) (mh-l)! (h) ro

Eq. (29) is the general expression for the diffraction efficiency at the m th-

order Bragg angle for a periodic grating of arbitrary grating shape. For example,

the first-, second-, and third-order diffraction efficiencies for a grating, whose

dielectric constant profile can be expressed as a Fourier sine series, are

DE= sin sl (30)
2 (e ro cos p

ro

2 2

DE2= sin [ 2 + es2j '3, (31)
2 2 2 (e ro )  cosP

and 4 3

DE3 = sin [ I Es3 1 T (32)
16 X 2 (e ro ) cos

In Eqs. (30), (31), and (32), only the Fourier grating components es1, es2' and

es3 are required to evaluate the diffraction efficiencies DE , DE2 , and DE3 .

Table I gives these Fourier components, normalized to the amplitude of the

fundamental grating, e s1, for gratings having sinusoidal, square-wave, triangular,

and saw-tooth dielectric constant profiles. Note that the sinusoidal, square-



wave, and triangular grating shapes can each be represented by a Fourier cosine

series also. In this case, the resultant diffraction efficiency expressions

contain only e cl e c2, and ec3. If nch < n and sh << n, which are true in

1-most cases it can be shown that e ch 2n n c and esh = 2n n sh' Therefore,

with ( ro) = no, Eq. (29) becomes

2 m 1 2 L h-1 TT(0) (nch) 2
DE = L1 -1) 1 2m L h (mh-) (2mh-) cos

(mh-l)! (h) h-1

m 2 L (mh-1) (n) mhl)(nsh) 2

+ [ (33)h (h) (2mh-1) cos d (33)

(mh-1) (h)

The results calculated with Eqs. (30), (31), and (32) do not agree with

those calculated by use of Burckhardt's matrix method. This is because Burckhardt

takes the boundary reflections into account, whereas they are not included in

the foregoing derivation. Our results may be corrected to include boundary

reflections by multiplying the diffraction efficiency by the transmittance

factor,

(1-R)2 [ 1+2Rcos(2pd)+R2

"r = (34)
m (1-R2)2 + 4R2~cos2(2vmd)+cos2 (20d)] - 4R(l+R 2)cos(2vmd)cos(20d)

where R = sin2(0 - cp)/sin(9 O+) B = 2 (e ) (costp )A, and. = [ ( eC )2
h mh h

+(h Cshh)2 evaluated with m =o for exact-Bragg conditions. This factor

is the same as the transmittance factor derived by Kogelnik and given as Eq. (8)

in Ref. 18, but with vd in that equation replaced by the argument of the sine

function in Eq. (28) of this paper. This allows generalization to higher

diffraction orders and nonsinusoidal gratings.



RESULTS AND DISCUSSION

The coupled-wave analysis in the preceding section was numerically

implemented on a UNIVAC 1108 computer and calculations were performed for

gratings having sinusoidal, square-wave, triangular, and saw-tooth distributions

of the dielectric constant. Table II gives numerical values for the diffraction

efficiencies at the first-, second-, and third-order Bragg angles for these

gratings. These results represent DE1 r1, DE2 T 2 , and DE3 73 as obtained

from Eqs. (30), (31), (32), and (34) with ero= 2.3225 (value used in Refs. 14

-4
and 18) and e 1= 10 e . The fundamental spacing of these gratings is L =

3.630 4m (resulting from recording with two beams of X= 632.8 nm at 60= 5.00).

For comparison, the results obtained by extending Burckhardt's numerical method

(matrix method) to nonsinusoidal gratings are also shown in Table II. These

results were calculated by programming Burckhardt's method on a UNIVAC 1108

computer and using the UNIVAC Math Pack subroutines to solve the eigenvalue

problem and the set of linear algebraic equations. Table II shows that the

results of these two methods are in close agreement; the deviation between

these two methods does not exceed 2.8% for diffraction efficiencies larger

than 5x10-6%. Diffraction efficiencies smaller than 5x10-6% are less significant

physically because the corresponding low-level diffracted intensities are

-8
difficult to measure. Diffraction efficiencies of less than 5x10 -8% have been

listed as zero in Table II. In addition to the results in Table II, we have

performed calculations for other grating thicknesses (15jm, 50pm, 1500bm, and

2000im) and other fundamental grating spacings (1.222pm and 1.822m). We found

that the deviation between the coupled-wave analysis and the matrix analysis

does not exceed 6.7% for any case with a diffraction efficiency larger than



-6
5x0-6%. Typically, the percentage deviation is a few tenths of one percent.

Although Burckhardt's numerical approach is rigorous, a number of

mathematical problems such as truncation of the matrix and discarding of large

positive eigenvalues must be overcome. A discussion of these is included in

Ref. 14. In addition, another mathematical difficulty associated with the

Burckhardt method, encountered in the present work, is a singularity that

arises in the process of solving a set of linear algebraic equations. For

pure phase gratings, Eq. (9) in Ref. 14 is real and symmetric. When the incident

wave is at the Bragg angle, pairs of equal elements are introduced on the

principal diagonal of the matrix in that equation. Thus, when the modulation

amplitude is small, pairs of equal eigenvalues are usually induced. This results

in a singularity in the matrix in Eq. (34) in Ref. 14; therefore, the equation

is nonsolvable. For the parameters in the particular examples of Ref. 14, this

problem does not occur because the modulation amplitude is large (0.0035 ero) '

However, the modulation amplitude may, in practice, be very small (of the order

10 or smaller) and the singularity problem must, therefore, be overcome. A

way to avoid the singularity is by shifting the incident angle by a negligible

amount away from the Bragg angle. Physically, because the shift is negligibly

small (10-5 degrees was used here), the incident wave can still be regarded as

being incident at the Bragg angle. In the present method, a closed-form

expression for the diffraction efficiency is obtained, and no mathematical

difficulties arise in the process of calculation. The computer time needed in

the present method is only about 1/20 of that needed with the extended Burckhardt

method to perform the same calculations.

From the results, we found that boundary reflections produced by the surfaces

3 ~ r



can considerably change the diffraction efficiency. The change can be an

increase or a decrease depending on whether the transmittance factor is greater

or less than unity. This effect has been studied by Cohen and Gordon.2 3 For

the grating parameters used here, T is typically in the range 0.70 to 1.20. In

practice, the boundary reflections can be eliminated by antireflection coatings

on the surfaces of the gratings. We also found that the diffraction efficiency

of a given higher order is mainly contributed by the corresponding higher-order

Fourier component of the grating. The difference between the diffraction

efficiencies for sinusoidal and nonsinusoidal gratings (having the same average

and fundamental grating amplitudes) appears only in the higher-order diffractions.

The higher-order diffraction efficiencies, however, very strongly depend on the

grating shape. Also, for small grating modulations, the diffraction efficiencies

at any order are very dependent on grating thickness; they increase with

increasing thickness. Marcuse24 has suggested that, for small-amplitude thick

nonsinusoidal phase gratings, the higher-order diffraction efficiencies might

be estimated from the relative amplitudes of the spatial harmonics, consistent

with the assumption of perturbation theory that only one Fourier component can

satisfy the Bragg condition for a given wavelength incident wave. Our calculations

show that this is true except when the amplitude of the harmonic grating (h = m)

is very small compared to the amplitude of the fundamental and the lower-order

contributing harmonic gratings. In this case, the contributions from higher-

order diffractions(hcm) are significant. In addition, we found that the agreement

between the coupled-wave method and the matrix method is better when the h = m

term is dominant over h<m terms. Rigrod 2 5 has shown that for reflection gratings

there is no correlation between higher-order diffraction efficiencies and the

corresponding harmonics of the index profile. The present results show that

/i



this is not true for transmission gratings.

The presentmethod can be used to analyze the diffraction efficiency of

any thick periodic grating regardless of the dielectric constant profile (grating

shape). The examples analyzed here have had even or odd symmetry. However,

the method does not require any symmetry to exist, but only that the grating

be periodic. From the gratings analyzed, different grating shapes have shown

different distributions of higher-order diffraction efficiencies. This indicates

the possibility that this type of analysis might be used in reverse to determine

the grating shapes of thick hologram gratings such as those recorded in

ferroelectric crystals.2 6  Due to nonlinearities in these materials, a sinusoidal

exposure does not necessarily produce a sinusoidal change in index of refraction.

Depending on which of the possible physical mechanisms is operative in a given

situation (such as drift of charge carriers or diffusion of carriers) different

grating shapes are generated. 2 7

Further, the derivations in the preceding section have assumed that the

grating medium is lossless, that the gratings are unslanted with respect to the

grating boundaries (grating vector parallel to surfaces of medium), and

that the incident wave is H mode polarized. If the medium is lossy, the results

still apply except that the coupling coefficients are complex, and therefore

the attenuation factors are implicitly contained in the expressions for the

transmitted wave and the diffracted wave. The method presented here can also

be straightforwardly applied to the analysis of slanted gratings and to E mode

polarization of the incident wave.

)7 ,2



CONCLUS IONS

A simple method of calculating arbitrary-order diffraction efficiencies of

thick transmission gratings with arbitrary periodic grating shapes has been

presented. The analysis uses a coupled-mode theory to obtain a closed-form

expression for the diffraction efficiency of an arbitrary order. This method

provides results with relative computational ease and results that are in

close agreement with those obtained by extending Burckhardt's numerical method.
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FIGURE CAPTION

Figure 1. Geometry of a thick grating with unslanted fringes. The
spatial modulation of C is indicated by the line pattern.

_/



O / ,or, O

0

o

0

L

d

Fig. 1

(p i



TABLE I. First three Fourier components for various relative dielectric

constant profiles (grating shapes). Components are normalized to the

amplitude of the fundamental grating, e 1sl

Grating Sinusoidal Square-wave Triangular Saw-tooth

Component grating grating grating grating

s 1/ 1 1 1 1

S2/sl 0 0 0 -1/2
s2 sl

e s3/s 0 1/3 -1/9 1/3

~{5 i



(0+) 99 T (0+)1791 (T 178 ' (I-)C8 ' (0+)'9 T (0+') 9 T (9-)00*0 (9-)ooo £

(T-i)ivi (T-)TZ'T (T-I)Z'T (T±)TZ*T (T±)TZ*T (T-i)Z'T (i±)TZ'i (i+)ivi I

(Z-)99*Z (Z-)61'rZ (S-)ETvo (9-)g*O (9-)'io (9-)g'o (9-)CT'o (9-)gT*o 001
(T-)LS*T (T-)LS'T (T-)L5;T (T-)L5;T (T-)Lg~l (T-)Lg*T (T-)Lg*T (T-)Lg*T

(17-)L8sC (0-)TS*C (9-)ooo0 (9-)ooo (9-)ooo (g-)ooo (s-)oo-o (g-)ooo 01 OT
Qc-)'9'T (C-) 17'T (C-)179 *T (C-)V~9*T (C-)'79' (C-)479 *T (C-) 179 * (C-)V91T T

padno x-~jW -P~do X1 :vN -PTno XEqV -paldnoo (SUOIDrm)

2Uaa tlqooq-tv 2Ui-I 2fliUWE.I 9 Avm-aIafbS s laPTSl1 psm-l

(sasaqquaapd ui uaq go aamod 1fvjkm % uT)

(g-)ooo0

Sp Pqqs11 aa % 01 x g '-'lq ssa1 go SaOOT13 uoUq3va1jTQ ' T"£9'0 =~~-T;A- @LP PtL, mui'f £0£9 =

(0: OT= Ls 3 '(81 Pu' VT *sjOI ui pasfl afl1A) .ZEZ=o a aa Sajur.xud Bupera aqlj -squauoduwoo

2UiTqa2 aalanoa 1L1qU9IUPUTIg PUV aBaA ZUIVs al~ iiwqt puv suo ojz~jja Kapu-noq ill s~uTiqva2 uolssmmsuvaq ao03

Sa12Up s~a Japao-paTqq puv '-pubos '-qsarT; aq qu quooad u-T fou~ioigge uoiqovaggp go uosTavduoD '11 3S1qVI



IX. SYSTEMS CONSIDERATIONS

A three-dimensional lithium niobate recording and storage system is

shown schematically in Fig. 8. The systems aspects of such an optical

recording scheme were thoroughly reviewed in this study. One of the results

of this review was the publication of a state-of-the-art review [6]. This

article is reproduced in this report and is a self-contained review. An-

other result of this review was a change in our experimental reading system.

An angular accessing system was developed and it is illustrated in Fig. 9.

This system allows accurate and simple angular beam positioning without the

need to rotate the crystal.
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